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ABSTRACT Patients in hospitals, particularly in critical care, are susceptible to many complications
affecting morbidity and mortality. Digitized clinical data in electronic medical records can be effectively
used to develop machine learning models to identify patients at risk of complications early and provide
prioritized care to prevent complications. However, clinical data from heterogeneous sources within hospitals
pose significant modeling challenges. In particular, unstructured clinical notes are a valuable source of
information containing regular assessments of the patient’s condition but contain inconsistent abbreviations
and lack the structure of formal documents. Our contributions in this paper are twofold. First, we present
a new preprocessing technique for extracting features from informal clinical notes that can be used in
a classification model to identify patients at risk of developing complications. Second, we explore the
use of collective matrix factorization, a multi-view learning technique, to model heterogeneous clinical
data—text-based features in combination with other measurements, such as clinical investigations, comor-
bidites, and demographic data. We present a detailed case study on postoperative respiratory failure using
more than 700 patient records from the MIMIC II database. Our experiments demonstrate the efficacy of
our preprocessing technique in extracting discriminatory features from clinical notes as well as the benefits
of multi-view learning to combine clinical measurements with text data for predicting complications.

INDEX TERMS Clinical notes, topic models, heterogeneous data, multi–view learning, collective matrix
factorization, postoperative respiratory failure.

I. INTRODUCTION
An Intensive Care Unit (ICU) monitors and treats the most
critically ill patients in a hospital. ICUs typically have
high staff–to–patient ratio and the most advanced medical
resources compared to other units. Critically ill patients are
often transferred to ICUs from Emergency or Surgery for
continuous monitoring and support.

Unfortunately, advanced medical interventions in criti-
cal care themselves make the patients vulnerable to sev-
eral complications [1]. Several infections, such as ventilator
associated pneumonia, central line associated bloodstream
infection and catheter associated urinary tract infection, are
associated with invasive devices used in ICUs. Infections
due to previous procedures undertaken are also possible,
such as surgical site infections [1]. Ventilatory support pro-
vided to many ICU patients are associated with complica-
tions like short-term and long-term intubation, barotrauma,

gastrointestinal tract bleeding, and weaning errors [2].
Unrecognized drug interactions can also cause problems,
including acute renal failure. In addition, ICU patients are
susceptible to nutritional complications, acid base problems,
and psychological disturbances [2]. Furthermore, ICU sur-
vivors are often known to have long-term physical, neuropsy-
chiatric, and quality of life impairments [3].
As the need for ICUs have grown worldwide [4], more

ICUs have been created but the availability of resources,
both clinical staff and monitoring equipment, remain limited
due to many practical constraints. Accurate knowledge of
the etiology of ICU complications is often lacking, lead-
ing to the inability of accurate identification of high–risk
patients and prevention of complications. As a result, in
many cases, current medical intervention is reactive and
adequate care is provided to patients after a complication
develops.
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The availability of digitized clinical data through Elec-
tronic Medical Records (EMR) in hospitals is increasing
throughout the world. In particular, ICUs are data–rich envi-
ronments where multiple parameters of patients are contin-
uously monitored at higher rates and volume compared to
other hospital units. This data presents an unprecedented
opportunity to study and gain deeper understanding of dis-
eases, develop new treatments and improve healthcare sys-
tems. There is, naturally, tremendous interest in identifying
high–risk individuals early, much before the onset of disease,
to provide preventive care and reduce the morbidity and
mortality of complications.

Along with potential opportunities, the data also poses
substantial challenges. Patient information is distributed
in several heterogeneous sources such as laboratory tests,
continuous waveforms, nursing notes, radiology images
and reports, genomic data and so on. In addition there
are problems associated with privacy, integration of dis-
tinct databases, inconsistently used clinical concepts across
databases, artifacts due to noise, measurement errors and
missing data [5]. The analysis, interpretation, and presenta-
tion of this data in a clinically relevant and usable format is
one of the main challenges faced by clinical decision support
systems [6].

Structured data available as numerical measurements
(e.g. lab tests) are easily amenable to standard statistical anal-
ysis. However, unstructured and high–dimensional data such
as free–text and images also contain valuable information
about a patient’s condition. Clinical notes, in particular, con-
tain both subjective and objective assessments of a patient’s
condition. They are recorded by the nursing staff and visiting
doctors who monitor the patient regularly (see Figure 3 for
an example). However, they are informally written, contain
a large number of inconsistently used abbreviations and lack
the linguistic structure of more formal documents like radiol-
ogy reports and discharge summaries. Hence standard tools
of linguistic analysis are not effective on such notes.

In this paper we investigate the use of such informally
written nursing notes for predicting complications arising
in critical care. We also explore multi–view learning based
techniques to effectively combine features obtained from
nursing notes and other clinical measurements for predictive
modeling. We present a detailed case study on predicting
postoperative acute respiratory failure and demonstrate the
efficacy of our text–based feature extraction and multi–view
learning approach for predictive modeling.

The rest of the paper is organized as follows. We begin
with a brief overview of related work in predictive analytics
in critical care. In section III we describe the heterogeneous
sources of data available in hospitals and critical care. Our
predictive system is detailed in section IV which describes
our text preprocessing techniques for extracting informa-
tion from nursing notes as well as our multi–view learning
based system for predictive modeling. We present a detailed
case study on an ICU complication – postoperative respira-
tory failure – in section V. Empirical results on predicting

postoperative respiratory failure using our predictive system
are presented in section VI. We conclude in section VII.

II. RELATED WORK
There have been many attempts at exploiting the richness and
heterogeneity of clinical data in electronic medical records.
A comprehensive introduction can be found in [7]. Systems
to provide services such as identifying patients at risk for
complications, personalized treatment planning, and hospital
resource management are being actively developed. Some
well known examples include ICDA, a platform for intelli-
gent care delivery analytics [8] and MatrixFlow, for analysis
of disease progression using clinical event sequences [9].
However, there many unresolved challenges related to
healthcare data collection, management and modeling.
Johnson et al. [5] present a detailed review on such challenges
in critical care.

A. TIME SERIES MODELS
A large body of literature can be found on modeling clin-
ical data with applications in physiological signal analysis
and disease risk prediction. Modeling the temporality of
multivariate clinical data that is noisy, sparse and unevenly
sampled presents significant challenges. For example,
Mao et al. [10] evaluate various features extracted from
clinical time series signals for classification models used in
deterioration warning in ICU patients. Wiens et al. [11] study
time-series classification techniques to identify patients
at risk of hospital acquired infections. A nonparametric
Bayesian approach for feature construction from longitudinal
health data is presented in [12]. Dürichen et al. [13] pro-
pose multi-task Gaussian processes for multivariate physio-
logical time-series analysis. Multi-task Gaussian processes
have also been used by Ghassemi et al. [14] to model
noisy, heterogeneous and unevenly sampled temporal clini-
cal data, including physiological signals and clinical notes.
Batal et al. [15] explore a different temporal pattern mining
approach to design classificationmodels formultivariate tem-
poral clinical data. A significant fraction of clinical data is
not continuous–valued but categorical such as billing codes,
diagnosis and procedure codes, demographic variables etc.
There has not been much progress in modeling temporal
categorical variables that is also sparse and irregular. Recent
progress in this direction is through an interesting use of
renewal processes [16]. Another recent work in modeling
heterogeneous dynamic clinical data is based on Generalized
Linear Dynamic Models [17].

B. DISEASE PROGRESSION MODELS
A related application is modeling the progression of diseases
which is useful both within a hospital episode as well as
for more chronic illnesses. For example, Wang et al. [18]
builds disease progression models using clinical findings and
comorbidities using incomplete and heterogeneous patient
records. Cohen et al. [19] use clustering of 45 physiologi-
cal, clinical and treatment variables from ICUs to identify
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complex metabolic states of patients and use these clusters to
track patient states over time. Zhou et al. [20] propose a fused
group lasso formulation for disease progression models using
lab tests, cognitive scores, genetic and demographic data.
A multivariate context-sensitive Hawkes process is used to
simultaneously infer disease relationship network and model
temporal progression of patients by Choi et al. [21] that can
be used to predict patient-specific future diseases.

C. COMPUTATIONAL PHENOTYPING
The related area of computational phenotyping aims to com-
putationally discover meaningful representations of pheno-
types, primarily from EMR data, that are clinically useful.
The most commonly investigated phenotypes are those that
provide clinically useful descriptions of various diseases.
These inferred phenotypes can then be used in designing
predictive models for diseases. Pivovarov et al. [22] present a
graphical model for large-scale discovery of disease models
using heterogeneous clinical data (notes, laboratory tests,
medications and diagnosis codes). Marlin et al. [23] inves-
tigate 13 clinical variables – vitals and lab measurements
like heart rate, respiration rate, glucose etc. – in the context
of mortality prediction and discover phenotypes, based on
cluster patterns, for mortality risk. A similar study in the
context of mortality risk, is by Che et al. [24] who specifically
uncover phenotypes related to septic shock and circulatory
diseases. Kale et al. [25] also use physiological streams to
discover phenotypes in critically ill neonates. Ho et al. [26]
study phenotypes based on chronic disease indicators and
procedure and diagnosis codes. Their phenotypes are rep-
resented as tensors where each mode denotes a medical
event. Diagnosis codes are also used by Zhou et al. [27]
for phenotyping renal disease and congestive heart failure.
Schulam et al. [28] studied phenotypes for scleroderma
(an autoimmune disease) with the aim of discovering disease
subtypes using physiological data. In all these works pheno-
type representations are given by patterns, based on specific
medical features, obtained by sequential mining or temporal
abstractions. A different graph–based representation is pro-
posed by Liu et al. [29] that uses diagnosis and medication
codes from EMRs.

D. MINING CLINICAL NOTES
The value of clinical notes for providing deeper insights into
clinical practice and understanding diseases is well recog-
nized. Finlayson et al. [30] have used over 20 million notes
spanning 19 years of data to build a graph of inter-related
clinical concepts which in turn can be used to mine associ-
ation rules, risks of various clinical events as well as patterns
of comorbidity, drug-drug, and drug-disease interactions.
Clinical notes have been used to model disease symptom
and medication relationships ( [31]) and to study symptom–
symptom interactions ( [32]) which in turn have been used
to identify previously unknown potential symptoms of dis-
eases. Deeper knowledge of risks and symptoms can directly
improve risk models for various diseases. Text mining has

also been used for pharmacovigilance for adverse drug event
detection and assessment [33]. Hripcsak et al. [34] demon-
strate that text analytics can detect clinical conditions in chest
X-rays with a consistency that is indistinguishable from that
of physicians reviewing the same reports. Adverse event iden-
tification due to central venous catheters have used nursing
notes in ICU [35]. A recent study byMurff et al. [36] explores
the use of text analytics to predict several postoperative com-
plications. They conclude that NLP analysis of EMR data to
identify postoperative complications have higher sensitivity
and lower specificity compared with patient safety indicators
based on discharge coding. In section V we discuss previous
studies on postoperative respiratory failure, some of which
use text sources for their analysis. A few recent studies have
investigated the use of topic modeling for analyzing free–text
clinical notes [14], [37], [38]. In all these studies machine
learning based models, that effectively use the information in
clinical notes, are found to outperform traditional scoring sys-
tems (like SAPS-I) in identifying patients with high mortality
risk.

FIGURE 1. Schematic of patient trajectory in a single hospital episode.
Various clinical measurements are made throughout the duration of the
stay. See Table 1 for a brief description of the measurements. A patient
can develop a complication at any time and our aim is to use all the past
measurements to identify patients at risk of developing a given
complication.

III. CLINICAL DATA IN CRITICAL CARE: CHALLENGES
Figure 1 shows a schematic of a patient in a hospital.
A patient is typically moved from one unit to another and in
each unit clinical data about the patient is recorded - either
digitally in electronic medical records (EMR) or on paper.
Table 1 briefly describes the various data sources available
in hospitals (including critical care). Standardized codes are
available to encode the various data sources, for example
LOINC codes for lab tests, RXNORM codes for medication
orders and ICD codes for diagnoses and procedures [7].
Two significant challenges in modeling clinical data to

determine a patient’s clinical state are posed by the hetero-
geneity and temporality of the data.

A. HETEROGENEITY
Table 1 provides a glimpse of the heterogeneity of clini-
cal data that may be present in a single hospital episode.
We have, among others, numerical measurements, text data
and image data as well as demographic data. In addition there
may be genetic data and data acquired from various wearable
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TABLE 1. Various sources of clinical data available in electronic medical
records and their characteristics.

sensors before the hospital episode that may also be used to
model a patient’s clinical states. Studies have also tried to use
data available in social media where patients might provide
information about their condition [39]. Features extracted
from diverse data sources differ in their datatypes, noise
characteristics and signal–to–noise ratio. For example, vitals
and lab measurements are typically continuous–valued, pro-
cedure and diagnosis codes are encoded using standardized
categories and comorbidities are usually in binary format
(indicating presence/absence). Features extracted from text
and images are very high–dimensional and require suitable
preprocessing before modeling. Exploring and modeling the
dependencies between such heterogeneous data sources is the
aim of statistical techniques such as multi–view learning.

B. TEMPORALITY
There is a notion of temporality in all data where multiple
measurements are made during a patient’s stay. For example,
repeated measurements of blood pressure, temperature or
multiple nursing notes or radiology investigations. Some lab
tests could also be done repeatedly to assess the patient’s
condition during a single hospital episode. The sampling rate
of these measurements can vary from being highly irregular –
only a few times during a patient’s stay – to being high
frequency data – continuous measurements (every second)
through bedsidemonitors in ICU. Thus traditional time-series
modeling approaches that assume regular sampling may not
always be applicable on such data. Several different methods
have been proposed to model or obtain useful features from
such data, when all the measurements are continuous–valued:
(1) Using statistical summaries within pre-determined win-
dows to obtain features (e.g. [11]) (2) Using temporal pattern
mining techniques (e.g. [15]) (3) Using multi-task Gaus-
sian processes to model unevenly sampled temporal data
(e.g. [14]). However many measurements are encoded in
binary or categorical data types, for example diagnosis codes

or standard risk scores and may also be temporal due to
repeatedmeasurements. Not many techniques are available to
model such data (a recent work uses renewal processes [16]).
In addition to heterogeneity and temporality, there are other

challenges due to sparsity, noise and missing data. Missing
clinical data requires special care while modeling – unlike in
many other contexts, data is not always missing–at–random
and may be missing by choice. For example, each patient
undergoes specific lab tests that is determined by the doctor
after assessing his/her clinical condition. Thus a lab test
appears missing because the doctor does not find it necessary
to conduct, given the patient’s condition. This can easily be
overlooked while analyzing data from patients with diverse
clinical conditions. In addition there are problems due to
privacy concerns and inconsistent definitions of clinical con-
cepts across various compartmentalized data archives within
hospitals. These issues are well described in [5]. Another
challenge lies in the effective use of domain knowledge in
predictive models. A wealth of data is present in biomed-
ical literature and on the web. The use of such knowledge
can potentially enhance the predictive accuracy of models.
Examples of such techniques include priors from ontologies
in deep learning [24] and the use of hierarchical priors in topic
modeling [40].
The source of our data is MIMIC II [41], a publicly avail-

able database, part of Physionet [42], containing physiolog-
ical signals and clinical data of more than 2300 patients in
Critical Care. The descriptions of the data in the following
are strictly only for this dataset. However many of the data
characteristics are common across hospitals. In this paper we
use only data available in the critical care (from MIMIC II)
but data from the hospital stay before ICU entry can also be
used with the same techniques that are described here.

FIGURE 2. Classification model for identifying patients at risk of a given
complication. Clinical measurements are used to obtain features that are
used to train a classifier. The trained classifier is used to identify patients
at risk of developing the complication.

IV. FEATURE DESIGN FOR A PREDICTIVE SYSTEM
We build a predictive system using a classification model.
Figure 2 shows a schematic of a classifier used to identify
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patients at risk of a complication. Historical data of patients
is used to train a binary classifier after previous cases of
the specific complication are identified and suitably labeled.
During prediction the classifier uses the input data to output a
label. If the label indicates the patient to be at risk, the clinical
staff can be alerted for appropriate intervention.

The first step towards building such a classifier is to pre-
process the data and extract features that are used to train
the classifier. In the following subsections we describe our
preprocessing and feature extraction steps from each of the
data sources. While extracting features from numerical data
such as lab tests and medication orders are straightforward
and have been studied previously [7], extracting features
from text data in nursing notes poses additional challenges.
We discuss these in detail and describe new methods of
extracting features from nursing notes. Finally we also dis-
cuss ways of combining the features from heterogeneous
sources.

A. TEXT PREPROCESSING AND FEATURE EXTRACTION
Text sources of data include nursing notes and investigation
reports. Nursing notes are informally written notes that record
the condition of patients. It contains both subjective and
objective evaluation of the patients. They are typically written
every 3–4 hours in critical care. Figure 3 shows excerpts from
an anonymized nursing note from the MIMIC II database.

FIGURE 3. Sample de-identified nursing note from critical care. Note the
informal usage and absence of grammatical structure in sentences. The
descriptions are organized into various sections that begin with
headings: CV (Cardio-Vascular), RESP (Respiratory), GU (Genito-Urinary),
GI (Gastro-Intestinal) etc., loosely based on different human
physiological systems.

A discharge summary is a report written at the end of a
patient’s stay in the hospital. It typically includes details of the
patient, the healthcare professionals involved during the stay,
diagnoses, investigations and complications during the stay,
past medical conditions as well as present and future treat-
ment plans. Discharge summaries are intentionally excluded
from our analysis since they are written at the end of the
patient’s stay and cannot be used in a real-time prediction
system within the ICU. This also makes the problem harder
since discharge summaries contain comprehensive informa-
tion of patients’ past and current medical history which nurs-
ing notes lack. Discharge summaries are formal documents
and systems analyzing them (using linguistic techniques)

rely on their grammatical structure. In comparison, nursing
notes are informally written and contain nonstandard and
inconsistently used abbreviations.
Observing the nursing notes, we notice that the data is not

completely unstructured but is structured into various head-
ings such as ‘‘CV’’, ‘‘RESP’’ etc. See Figure 3 for an exam-
ple. These headings are neither consistent nor unique; for
example, ‘‘CV’’ is also written as ‘‘CARDIO’’ and ‘‘CARD’’
in some notes.
The key idea of our preprocessing method lies in real-

izing that the importance of a word or phrase in the text,
in the context of a complication, is relative to the heading
within which it resides. The significance of the same word
(e.g. ‘blood’) differs when it is under the heading ‘‘CV’’
(cardiovascular) than when it is under ‘‘GI’’ (genito-urinary).
Hence, we extract features for each heading separately and
assign an importance value to each word based on its
frequency of occurrence in the training data. Only a fixed
percentage of the extracted words are used in further pre-
processing of the text. The complete sequence of steps per-
formed is listed below. We denote by text observation all
the text data for a single patient concatenated together which
includes nursing notes and investigative reports of a patient
but excludes the discharge summary.

• Extract all the headings from all text observations using
predefined rules that identify headings. For example,
a word in the beginning of a sentence, followed by colon
is considered a heading.

• Eliminate headings and regroup data. Since headings are
not consistently provided in the text, several different
headings could in reality refer to the same word (exam-
ple ‘CARDIO’, ‘CV’ and ‘CARD’ all refer to the same
heading). We use topic modeling to automatically form
clusters that represent different sections of the notes.
This is described in detail in the following subsection.
After this step all the sections of the notes have consis-
tent headings (i.e. sections under ‘CARDIO’, ‘CV’ and
‘CARD’ would have the same heading) that are different
from the original headings.

• Words within the same heading are processed together
for each text observation. Stemming, stop word removal
and punctuation removal are performed to obtain a
list of stem words under each heading (for each text
observation).

• Let nw(C,H ) be the number of text observations from
class C wherein the word w occurs under heading H .
The importance of a word is computed as Iw(H ) =
nw(A,H ) � nw(B,H ) for classes A and B. Thus words
that are more frequent in class A are positive and those
for class B are negative and the importance value is
an approximate measure of the word’s discriminatory
power.

• For each heading H , we sort the words with respect
to their importance values Iw(H ), select the top and
bottom 5% (thus selecting from both the most neg-
ative and most positive values), and discard the rest.
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Within each heading, each of thesewords forms a feature
and the number of occurrences of the word within a text
observation is the feature value. A patient’s data consists
of a feature vector containing all the feature values
(for all the headings).

With these preprocessing steps we obtain 7228 features
from the text data. Note that this algorithm is an extension
of the method presented in [43] wherein clustering based on
headings is not automated and requires manual identifica-
tion of synonymous headings. Here we achieve automation
through the use of LDA for clustering.

1) CLUSTERING NOTES WITH TOPIC MODELS
The aim of clustering the notes is to obtain consistently
named headings which are then used for feature extraction
as described above.

We segment each clinical note utilizing the heading–based
structure found within each note. A heading is identified
by the set of words between the beginning of a new line
and a colon (’:’). The set of words between two headings is
considered to be a section. We found negligibly few colons
within a section and so this rule turned out to be sufficiently
accurate. All these words along with the section’s heading are
considered to be a single document for topic modeling.

During training, notes of all the patients are concatenated
and segmented to form individual documents using the seg-
mentation rule described above. The set of all words in all
the documents (excluding the words removed during prepro-
cessing) forms our vocabulary. A 50–topic Latent Dirichlet
Allocation based topic model [44] is fitted on this doc-
ument corpus. Each topic is given a unique but arbitrary
name (A, B, C etc.). For each document in the training set,
the model gives us 50 topic probabilities. The name of the
topic with the highest probability is chosen as the heading for
each section.

For notes in the test data, we segment the notes using the
same rule into different sections. For each section we obtain
a new heading by obtaining the topic probabilities from the
trained LDA model and choosing the name of the topic with
the highest probability.

B. FEATURES FROM HETEROGENEOUS DATA
1) MULTI-VIEW LEARNING
Measurements from heterogeneous sources for the same
subject, also called views, are commonly presented as
co–occurring samples. For example, blood tests, medication
orders and nursing notes present multiple views for the same
subject in our study. Multi–view learning assumes that the
measurement process for each view differs and hence the
noise model and the signal–to–noise ratio in each view also
differs.

A naïve way to learn from such multiple views is to
concatenate the extracted features from each source and use
the concatenation as a single data set. This approach does
not identify and exclude views or features within views
that are unrelated to the outcome variable (the complication

to be predicted). Several studies have illustrated the bene-
fits of principled techniques of exploring multi–view data
over simple concatenation [45]. These techniques exploit the
correlations within and between views to improve predic-
tive learning. A number of these techniques are based on
Canonical Correlation Analysis (CCA) [46] that finds linear
relationships between multidimensional variables and can be
viewed as a way of guiding feature selection and dimension-
ality reduction towards underlying semantics [45]. Classical
CCA has been extended to a probabilistic formulation [47],
to a Bayesian formulation [48] and a multi–view generaliza-
tion of Bayesian CCA is given in [49].
Klami et al. [50] propose a multi–view learning approach

that generalizes CCA for arbitrary collection of matrices.
It allows each of the views to have a separate low-rank struc-
ture that is independent of the other views, as well as struc-
tures that are shared only by a subset of them. It also supports
multi–view learning on continuous, binary and count obser-
vations and is efficient for sparse matrices involving missing
data. Unlike many other methods, their Bayesian solution
requires no parameter tuning. Thus this method offers several
advantages particularly for clinical datasets that havemultiple
views, contain continuous, binary and count observations,
and often have sparse and missing observations.

FIGURE 4. Illustration of CMF for multi–view learning [50]. X1, X2, X3 are
different views representing relationships between entity sets
e1, e2, e3, e4. The aim of CMF is to obtain a low dimensional
representation (U) of the combined data. See text for more details.

We briefly describe the collective matrix factoriza-
tion (CMF) approach of [50]. A matrix is a relationship
between two entity sets. Entity ei in Figure 4 represents the
entity set for the rows and columns of corresponding matrix.
For example, if X1 represents the blood tests for a set of
patients, e1 represents the set of patients, e2 represents the set
of variables related to blood tests and matrix X1 represents
the relationship of e1 and e2. Similarly X2 represents the
relationship between e1 and e3 (e.g. features from nursing
notes).
The aim of CMF is to approximate each matrix with a

rank–K factorization along with additional row and column
bias terms. Assume M matrices Xm = [x(m)ij ] representing
E sets of entities, each with cardinality de. Let rm and cm
denote the entity sets corresponding to the rows and columns
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of matrices. The element corresponding to the row i and
column j of the mth matrix can be written as [50]:

x(m)ij =
KX

k=1

u(rm)ik u(cm)jk + b(m,r)
i + b(m,c)

j + "
(m)
ij , (1)

where Ue = [u(e)ik ] 2 Rde⇥K is the low–rank matrix related
to the entity set e, b(m,r)

i and b(m,c)
j are the bias terms for the

mth matrix, and "
(m)
ij is element–wise independent noise.

The same model is also obtained by collecting all the
matrices into a larger symmetric matrix Y of dimension
d = PE

e=1 de. Note that blocks not corresponding to any
observed relationship between entities are left blank (this
includes all blocks along the diagonal). The CMF model,
ignoring noise terms, is given by Y = UUT + ✏ where
U 2 Rd⇥K is the concatenation of all the Ue matrices
(column-wise). Although, in principle, any symmetric matrix
factorization technique, that can handle missing values, can
be used to obtain this factorization, the variational Bayesian
approximation presented in [50] adds sparsity priors to infer
the structured noise in each entity set that is independent
of other entities. Thus CMF obtains private factors for each
entity set as well as shared factors that are shared across entity
sets.

Matrix U contains row–wise concatenated rank-K
representation of all the entity sets. In particular, the block
corresponding to entity e1 in matrix U is the joint representa-
tion of all matrices for the entity set e1. In our example, this
corresponds to the patients and can be used as a combined
representation of patients shared across all views. Thus,
CMF not only helps in reducing the dimensionality of the
combined dataset (similar to the standard PCA when there
is a single view) but also transfers information between the
views in a way that augments learning from the combined
representation.

FIGURE 5. Our overall approach using CMF to obtain features for
classification. Features obtained from each of the data sources, form the
different views. These views are combined using CMF to obtain a low
dimensional representation used as features for classification.

2) OVERALL APPROACH
Our overall approach is shown in Figure 5. We extract
term frequencies of statistically significant terms within each
heading, after clustering the headings, as described in the pre-
vious section. For other numerical measurements, we extract

the following statistical features from the training sample:
sample–based mean, standard deviation, range, skewness and
kurtosis. Static demographic features like gender, ethnicity
etc. are used directly as features.
CMF, as described above, is used to combine these differ-

ent views and obtain transformed features. For our dataset
entity e1 is the set of patients and entities e2, e3, e4, . . . are
feature matrices from different views (see Figure 4). These
views for our dataset are shown in table 3. Thus matrix X1
has text features, matrices X2,X3,X4,X5 have statistical fea-
tures from chart events, IO events, Labs and Medications
respectively, X6 has comorbidities and X7 has demographic
features. Note that the datatype of each matrix is differ-
ent – statistical features are continuous-valued, term fre-
quencies from text are ordinal and comorbidities are binary.
Categorical demographic features are also converted to
binary through one–hot encoding. The input to CMF are the
matrices X1, . . . ,X7. The number of components K is empir-
ically chosen. As described above, the output matrix U of
CMF (in Figure 4) has blocks corresponding to each of the
entity sets (e1, e2, . . .). The block corresponding to e1 has a
K–dimensional representation of patients that can be used as
the transformed feature set for classification.

C. ONLINE MODEL UPDATES AND PREDICTION
A simple batch-wise approach can be used for online moni-
toring and prediction. The first model is trained on historical
data of patients. As more data of all patients arrives, the
model can be updated on a regular basis and subsequent
predictions can be made using the updated model. The period
after which such updates are done depends on the frequency
of measurements. With respect to nursing notes in critical
care, we found that updating the model every 24 hours gives
accurate predictions.

V. POSTOPERATIVE ACUTE RESPIRATORY FAILURE
Acute Respiratory Failure (ARF) occurs when the respiratory
system fails in oxygenation and/or CO2 elimination. It is the
end point of respiratory complications (such as pneumonia,
atelectasis etc.) and is the most common among them.
ARF occurs postoperatively in about 3% of all surgical

cases and death within 30 days occurs in nearly 26% of the
cases [51]. Incidence of ARF in general surgical patients
ranges from 0.2 to 3.4% [52]–[54] and may be as high as
7% in complicated surgeries such as cardiac, open aortic and
upper abdominal surgeries [55]. ARF is often fatal having a
mortality rate of> 25% andmanagement is difficult owing to
multiple etiologies. Surprisingly, there has been no change in
the incidence and mortality rates over the last 10 years [51].
Khuri et al. [56] show that ARF is an independent predictor
of mortality and Dimick et al. [57] have studied the large cost
and length of stay associated with ARF. A predictive model
for ARF can hence also be utilized in predictive systems for
mortality, cost and length of stay.
Respiratory Failure can be classified into two types

and a variety of physiological factors are involved in
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the pathogenesis. Type 1 respiratory failure or hypoxic res-
piratory failure occurs when partial pressure of oxygen in
blood (PaO2) < 60 mm Hg [58]. This is the most com-
mon form of respiratory failure and is due to impairment
of diffusion of oxygen across the alveoli. Most common
causes of diffusion impairment are pulmonary edema or
collapse of the alveoli (atelectasis) leading to ventilation-
perfusion mismatch. Type II respiratory failure or hypercap-
neic respiratory failure occurs when partial pressure of carbon
dioxide in blood (PaCO2) > 50 mm Hg [58]. It occurs
because of the inability of lungs to exhale carbon dioxide.
Most common causes of this type of failure are neurological
or muscular dysfunction leading to decrease in ventilation.
Trauma leading to severe injuries to brain or chest wall
is the other factor. Thus, respiratory failure is defined as
PaO2 < 60 mm Hg or PaCO2 > 50 mm Hg. Another def-
inition used for ARF is the inability to extubate (i.e. breathe
without mechanical ventilation) for more than 48 hours [59].
There is no general agreement on the time after the surgery
within which ARF is considered to be a postoperative com-
plication [60]. Usually within 3-7 days after surgery is con-
sidered best [52], [61]–[64] although, some authors consider
time frames upto 30 days after surgery [51], [65].

A. RESPIRATORY FAILURE: INCIDENCE
AND RISK FACTORS
Many risk factors associated with ARF have been identi-
fied in an attempt to evaluate patients preoperatively. They
are of two types, patient–related and procedure–related.
Smetana et al. [60] present a systematic literature survey
and meta-analysis to identify the preoperative risk factors
for the postoperative respiratory complications. All these risk
factors, in decreasing order of the pooled estimates of odds
ratios, are listed in Table 2.

TABLE 2. Risk factors for postoperative acute respiratory failure listed in
decreasing order of pooled estimates of odds ratios found in
previous studies. See text for more details.

Although several risk factors have been identified, pre-
diction of ARF remains a challenge. Six previous studies
in the literature have explored predictive models for ARF.
Several predictors have been identified by these studies and
are mainly categorized into preoperative and intraoperative
predictors (See [58, Table 1]). We now briefly describe these
studies.

Ramachandran et al. [62] used data of 222,094 patients
undergoing non-emergent, non-cardiac surgery from the
American College of Surgeons National Surgical Quality
Improvement Program (ACS NSQIP) database. The NSQIP

database defines unplanned intubation as placement of an
endotracheal tube and mechanical or assisted ventilation
because of the onset of respiratory or cardiac failure man-
ifested by severe respiratory distress, hypoxia, hypercap-
nia, or respiratory acidosis within 30 days of an operation.
The incidence of unanticipated early postoperative intubation
was reported to be 0.83–0.9%. Independent predictors of
unanticipated early postoperative intubation included current
ethanol use, current smoking, dyspnea, chronic obstructive
pulmonary disease, diabetes mellitus needing insulin therapy,
active congestive heart failure, hypertension requiring medi-
cation, abnormal liver function, cancer, prolonged hospital-
ization, recent weight loss, body mass index less than 18.5
or greater than 40 kg/m2, medium-risk surgery, high-risk
surgery, very high-risk surgery, and sepsis ([62, Table 2]).
Gupta et al. [51] also use the NSQIP dataset to study

ARF. Their definition of ARF is postoperative mechanical
ventilation of greater than 48 hours or unplanned intubation
within 30 days of surgery. They found five predictors: type of
surgery, emergency case, dependent functional status, preop-
erative sepsis, and higher American Society of Anesthesiolo-
gists (ASA) class ([51, Table 4]). On a validation dataset they
report AUC of 0.897. Hua et al. [65] also use NSQIP data,
to identify preoperative risk factors of ARF. They fit a Cox
Proportional Hazards model and hazard ratios are reported
for the predictors ([65, Table 2]). Main predictors from this
study are patient age, ASA class, the presence of preoperative
sepsis and total operative time.
There are two studies which analyze the use of

electronic anaesthesia records and discharge summaries.
Breueckman et al. [64] define their outcome as re-intubation
in the hospital after primary extubation in the operating
room, leading to unplanned mechanical ventilation within
the first three postoperative days. Independent predictors
for re-intubation reported in this study are: ASA Score of
3 or more, emergency surgery, high-risk surgical service,
history of congestive heart failure, and chronic pulmonary
disease. Weights of 3, 3, 2, 2, and 1 are assigned to these
predictors, respectively, based on their beta coefficient in the
predictive model. The score yields a calculated AUC of 0.81,
whereas each point increment is associated with a 1.7-fold
(odds ratio: 1.72 [95% CI: 1.551.91]) increase in the odds
for re-intubation in the training dataset. Using a validation
dataset (of 16,884 cases), the score had an AUC of 0.80 and
similar estimated probabilities for re-intubation.
Blum et al. [63] use data from an institutional database

of surgical, ARF and death registries to identify risk fac-
tors for ARF. Preoperative risk factors for ARF develop-
ment include ASA status 3-5 emergent surgery, renal failure,
chronic obstructive pulmonary disease, number of anesthet-
ics during the admission, and male sex. After matching,
intraoperative risk factors include drive pressure, fraction of
inspired oxygen, crystalloid administration, and erythrocyte
transfusion.
However, all these existing studies have major lim-

itations. It is important to note that these studies are
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very heterogeneous. For example, the definition of ARF
varies across the studies: 4 out 6 studies [51], [62], [64], [65]
consider ARF to be prolonged mechanical ventilation or
unplanned intubation whereas other two consider PaO2 and
PaCo2 values to define ARF [61], [63]. The timeframe
considered is also different with 4 studies considering less
than 7 days after surgery [61]–[64] and other two [51], [65]
considering less than 30 days after surgery. An important
point to note is that all these studies are retrospective studies
including data from discharge summaries etc. which will
not be available during the stay of patient in the hospital
and hence cannot be used in a real-time predictive system.
Another limitation is that all these models require exten-
sive manual evaluation by trained physicians and is time
consuming.

To our knowledge no previous work has investigated the
use of nursing notes and investigative reports during the
patient’s stay to predict ARF and we take the first step in
this direction. We are also unaware of any previous work that
combines text sources and other clinical data for real–time
model building and prediction in ICUs.

VI. EXPERIMENTS
Our experiments are designed to answer the following
questions:

• Do nursing notes in critical care provide sufficient
discriminatory signal to distinguish between ARF and
non-ARF cases?

• Can data from nursing notes be combined effectively
with the variety of patient measurements present to
design a classifier?

• Can a real-time online system effectively identify
patients at risk of ARF?

A. EXPERIMENT SETTINGS
1) DATASET
Postoperative Acute Respiratory Failure cases are identified
using ICD9 code 518.5. We obtain clinical data of 91 ARF
patients from the MIMIC II database. We also obtain data of
684 patients who underwent various kinds of surgeries. Thus
we have a dataset of 775 patient records: 91 from ARF class
and 684 from Non-ARF class.

For ARF cases, we only use data before the diagnosis
of ARF. The diagnosis timestamp is not present in MIMIC
II and so we use the following criteria to infer the time.
We use the lab measurements to check if any of the fol-
lowing three conditions are true: (1) PaO2 < 60 mm Hg
(2) PaCO2 > 50 mm Hg (3) PaO2/FiO2 < 300, and if so, we
use the timestamp of the lab measurement as the diagnosis
timestamp. Further, we manually examine all the nursing
notes to ensure that ARF is not diagnosed earlier than the
inferred timestamp.

2) CLINICAL MEASUREMENTS
Along with nursing notes that are periodically recorded in
the ICUs, we also use the measurements shown in Table 3.

TABLE 3. Different views of a patient: clinical measurements, in addition
to nursing notes, used to obtain features for classification.

Only those measurements that are present in more than 20%
of the patients in our dataset are chosen. For temporal numer-
ical measurements – Chart events, IO events, Blood Tests and
Medications – we extract the following statistical features
for train and test samples: mean, standard deviation, range,
skewness and kurtosis. Static features – demographics and
comorbidities – are used directly as features. Comorbidities
are encoded as binary variables, all demographics except
age are categorical variables which are converted to binary
variables through one–hot encoding. For CMF, we consider
each set of measurements as given in Table 3 as separate
views.

3) EVALUATION METRIC
We use the Area Under the ROC Curve (AUC) as our eval-
uation metric. All results show average AUC and standard
deviation over 5–fold cross validation.

4) BASELINES
To evaluate our text preprocessing method for feature
extraction, we compare with the standard method used in
text analysis, of Term Frequency – Inverse Document Fre-
quency (TF-IDF). Stemming, stop word removal and punc-
tuation removal are performed before obtaining the TF-IDF
vectors. We also compare our method with the method of
Ghassemi et al. [38] that uses topics obtained from Latent
Dirichlet Allocation as features for mortality prediction using
text data.

5) CLASSIFICATION
These features are evaluated using five classifiers:
Logistic Regression with L2 regularization (LR), Sup-
port Vector Machines (SVM), Decision Tree (DT),
AdaBoost (AB) and RandomForest (RF).We use Scikit-learn
implementations of these classifiers [66]. Default settings are
used in each case, except for Random Forest where we use
1000 trees.
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Features obtained from various clinical sources are com-
bined through CMF and evaluated using the same five classi-
fiers. The R package from CRAN for CMF is used to obtain
the transformed features.

Since there is class imbalance of nearly 1:7.5 in the dataset,
we use SMOTE [67] to inflate the minority class during
training. When only text data is used, we use principal
component analysis (PCA) to reduce the dimensionality of
the feature matrix. The number of components is chosen
to be 250 determined empirically through cross–validation
to obtain the best predictive accuracy. When CMF is used
along with other clinical data, PCA is not required since CMF
itself obtains a transformed feature set assuming a low rank
factorization.

B. RESULTS
1) OFFLINE CLASSIFICATION WITH TEXT-BASED FEATURES
Table 4 shows classification results with five different clas-
sifiers using three different feature sets all of which are
obtained from the nursing notes.

TABLE 4. Classification results: Average AUC (with standard deviation)
over five folds. Best result for each classifier in bold.

Logistic regression and Random Forest obtain the best
classification results. With four out of the five classifiers,
our method outperforms the standard TF-IDF approach. With
all the five classifiers, our method outperforms the method
of Ghassemi et al. Overall, the best result of AUC 0.844 is
obtained with Random Forest on the features obtained using
our method. Random Forest is also the least sensitive to data
dimensionality and the AUC remains above 0.82 when PCA
is not used.

2) DISCRIMINATORY FEATURES
We study the most discriminatory terms found using the Gini
importance scores in the trained Random Forest. Note that
for this experiment, we use the entire feature matrix without
PCA–based dimensionality reduction. Terms within the fol-
lowing headings were found to be the most discriminatory:
Neurology (O), Genito-Urinary and Gastro-Intestinal (AN),
Cardiovascular (AW) andRespiratory (W). Under these head-
ings, the most discriminatory terms are words that indicate
general health status like ‘alert’, ‘stable’, ‘pulse’, ‘wean’,
‘well’, ‘good’ and ‘pain’. Class frequencies of twenty of these
words, shown in Figure 6 are high in Non ARF patients as
expected.

Figure 7 shows excerpts from the nursing notes contain-
ing these words. This demonstrates the value of nursing
notes that record personal observations of the clinical staff.

FIGURE 6. Proportions of most discriminatory text features (format:
heading_term) in both classes: ARF and Non-ARF. These terms suggest
general improvement in health condition and are present in significantly
higher proportion in Non-ARF patient notes.

FIGURE 7. Nursing notes excerpts corresponding to significant features
(see Figure 6). Terms are prepended with headings inferred from LDA.

TABLE 5. Classification results using features from each view
individually – from Table 3 and from text based features (repeated
from Table 4) – and (last column) using CMF that combines all
views: Average AUC over five folds.

Patients who show visible improvement in their condition are
less likely to develop ARF and possibly other complications
as well.

VOLUME 4, 2016 7997



V. Huddar et al.: Predicting Complications in Critical Care Using Heterogeneous Clinical Data

FIGURE 8. Online (day-wise) prediction of ARF using nursing notes for 13 patients. Prediction (0: not at risk of ARF, 1: at risk of ARF)
made at the end of each day using all previous nursing notes. Red cells mark the day when clinical diagnosis of ARF is made.
In these 13 cases, our classifier predicts the possibility of ARF many days before diagnosis.

3) OFFLINE CLASSIFICATION WITH COMBINED FEATURES
In addition to the text features obtained from nursing notes we
use features from other clinical data listed in Table 3. Table 5
shows the classification results (first six columns) when each
of these views is individually used. Note that PCA is applied
only to the feature matrix from text data and not for features
obtained from other clinical measurements. We observe that
none of these views can yield significant predictive accuracy.

We also reproduce the results obtained by using text fea-
tures alone, using our preprocessing method, from Table 4.
With Logistic Regression, Random Forest and Adaboost,
CMF that combines all features yields higher predictive accu-
racy than that obtained using text features alone. These results
are for K = 1000 in CMF chosen through cross-validation
to obtain the best predictive accuracy. Logistic Regres-
sion with CMF on the combined features obtains the best
AUC of 0.881.

4) ONLINE CLASSIFICATION
We evaluate online prediction using only our text based
features. After training the model on the training data, we
contruct features from all the notes written during a single day
for each patient and predict the risk of ARF. Figure 8 shows
a schematic of the prediction for 13 patients who developed
ARF. At the end of each day, the classifier predicts 1 (at risk
for ARF) or 0 (not at risk for ARF) using the notes of that day.
Different patients are diagnosed with ARF on different days
– marked bv red cells. We observe that in all these 13 cases,
the classifier predicts 1 and hence infers the imminent risk
of ARF much before the clinical diagnosis. In total there are
91 ARF patients with mean ICU length of stay: 28.5 days
(standard deviation: 23.75) and median ICU length of stay:
20 days (ICU length of stay statistics for all 775 patients are:
mean 13.5 days, standard deviation 16.75 andmedian 8 days).

Overall classification results over five folds
(for 775 patients) are shown in Table 6. Note that while
prediction is done each day, we report the accuracy on a
per–patient basis, i.e. accuracy measures the proportion of
test set patients correctly identified as ARF (on any day on
or before clinical diagnosis) or Non-ARF cases. Prediction
Time, defined only for correctly identified ARF cases, is the
number of hours between our classifier’s identification of
ARF and the clinical diagnosis. We observe that Logistic

TABLE 6. Online Classification results: average per–patient accuracy over
five folds and, for correctly identified ARF cases, average prediction time
(number of hours before diagnosis).

Regression and Random Forest obtain the best accuracy val-
ues and can accurately identify more than 80% of the patients
accurately on an average more than 3 days in advance. Early
identification of high–risk patients can lead to prioritized care
and potentially, prevention of the complication.

VII. CONCLUDING DISCUSSION
In this paper we investigate the use of unstructured clinical
notes for predicting complications in critical care. We present
a new preprocessing technique for extracting features from
such clinical notes. We also explore the use of Collective
Matrix Factorization (CMF) based multi–view learning to
model heterogeneous clinical data. Using postoperative res-
piratory failure in critical case as an example, we present
empirical results to illustrate the efficacy of these techniques.
Similar to previous studies, such as [14], [37], and [38],

we find that informally written nursing notes are extremely
valuable sources of information for predictive modeling. Our
new preprocessing technique exploits the presence of sections
within the nursing notes. However identification of these sec-
tions is problematic due to inconsistent naming of the section
headings. We solve this problem by inferring clusters on the
notes (through topic modeling). Statistically significant pairs
of section heading and terms within each section are then
used as features for classification. Our approach is found to
outperform previous best techniques for feature extraction –
TF-IDF and topics from LDA [38] – that do not exploit the
structure found in these otherwise unstructured notes.
We find that nursing notes contain several general indica-

tors of the improvement in a patient’s condition that distin-
guish patients who do not develop complications from those
who do. Text based features can also be used in an online
manner, using for example all the notes available in consec-
utive 24-hour windows, to identify the risk of complications.
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We find that risk of complications can be identified several
days in advance using such a system, with an overall accuracy
of above 80%.

Heterogeneity in clinical data poses significant challenges
for predictive modeling. Apart from nursing notes, many
other measurements are available for patients in critical care.
These include, among others, lab measurements, medication
orders, comorbidity information and demographic details.
These can be considered different views of the patient and
often have different datatypes and noise characteristics. CMF
offers a principled approach to combining diverse datatypes
and perform multi–view learning that can provide a low
dimensional representation of the combined data.We observe
that while each of the views does not have high discriminatory
value in classification, with the use of CMF the predictive
value of the combined data is higher than that of only text–
based features. A limitation of the CMF–based approach is
the loss of interpretability with respect to the significance of a
feature in the final prediction. This is also the case with PCA–
transformed features in case of a single–view feature matrix.
The importance of the original feature in the final prediction
cannot be determined since the transformation produces new
features that are a combination of all the input features.
We only use statistical summaries of the temporal data
as features. Use of several recent techniques for mod-
eling sparse, irregularly sampled temporal clinical data
(such as [13] and [16]) in combination with multi–view learn-
ing might be a useful direction to explore.
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